Ramanujan's Identities, Voronoi Summation Formula, and Zeros of Partial Sums of Zeta and L-functions
نویسنده
چکیده
The focus of the first part of the thesis commences with an examination of two pages in Ramanujan’s lost notebook, pages 336 and 335. A casual, or even more prolonged, examination of the strange formulas on these pages does not lead one to conclude that they are related to one another. Moreover, it does not appear that they have any relationships with other parts of mathematics. On page 336 in his lost notebook, Ramanujan proposes two identities. Here, it does not take a reader long to make a deduction – the formulas are obviously wrong – each is vitiated by divergent series. Most readers encountering such obviously false claims would dismiss them and deposit the paper on which they were written in the nearest receptacle for recycling (if they were environmentally conscientious). However, these formulas were recorded by Ramanujan. Ramanujan made mistakes, but generally his mistakes were interesting! Frequently, there were hidden truths behind his not so precise or accurate claims – truths that were deep and influential for decades. Thus, it was difficult for us to dismiss them. We initially concentrate on only one of the two incorrect “identities.” This “identity” may have been devised to attack the extended divisor problem. We prove here a corrected version of Ramanujan’s claim, which contains the convergent series appearing in it. Our identity is admittedly quite complicated, and we do not claim that what we have found is what Ramanujan originally had in mind. But there are simple and interesting special cases as well as analogues of this identity, one of which very nearly resembles Ramanujan’s version. The aforementioned convergent series in Ramanujan’s faulty claim is similar to one used by Voronöı, Hardy, and others in their study of the classical Dirichlet divisor problem, and so we are motivated to study further series of this sort. This now brings us to page 335, which comprises two formulas featuring doubly infinite series of Bessel functions. Although again not obvious at a first inspection, one is conjoined with the classical circle problem initiated by Gauss, while the other is associated with the Dirichlet divisor problem. Berndt, Kim, and Zaharescu have written several papers providing proofs of these two difficult formulas in different interpretations. In this thesis, We return to these two formulas and examine them in more general settings. The Voronöı summation formula appears prominently in our study. In particular, we generalize work of
منابع مشابه
Riemann ’ s and ζ ( s )
[This document is http://www.math.umn.edu/ ̃garrett/m/complex/notes 2014-15/09c Riemann and zeta.pdf] 1. Riemann’s explicit formula 2. Analytic continuation and functional equation of ζ(s) 3. Appendix: Perron identity [Riemann 1859] exhibited a precise relationship between primes and zeros of ζ(s). A similar idea applies to any zeta or L-function with analytic continuation, functional equation, ...
متن کاملAutomorphic distributions , L - functions , and Voronoi summation for GL
for the error term in Gauss’ classical circle problem, improving greatly on Gauss’ own bound O(x1/2). Though Voronoi originally deduced his formulas from Poisson summation in R2, applied to appropriately chosen test functions, one nowadays views his formulas as identities involving the Fourier coefficients of modular forms on GL(2), i.e., modular forms on the complex upper half plane. A discuss...
متن کاملLectures on Analytic Number Theory
1. What is Analytic Number Theory? 2 1.1. Generating functions 2 1.2. Operations on series 3 1.3. Some interesting series 5 2. The Zeta Function 6 2.1. Some elementary number theory 6 2.2. The infinitude of primes 7 2.3. Infinite products 7 2.4. The zeta function and Euler product 7 2.5. Infinitude of primes of the form 4k + 1 8 3. Dirichlet characters and L functions 9 3.1. Dirichlet character...
متن کاملRamanujan's Formula for the Logarithmic Derivative of the Gamma Function
Abstract. We prove a remarkable formula of Ramanujan for the logarithmic derivative of the gamma function, which converges more rapidly than classical expansions, and which is stated without proof in the notebooks [5]. The formula has a number of very interesting consequences which we derive, including an elegant hyperbolic summation, Ramanujan’s formula for the Riemann zeta function evaluated ...
متن کاملA procedure for generating infinite series identities
A procedure for generating infinite series identities makes use of the generalized method of exhaustion by analytically evaluating the inner series of the resulting double summation. Identities are generated involving both elementary and special functions. Infinite sums of special functions include those of the gamma and polygamma functions, the Hurwitz Zeta function, the polygamma function, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015